A polynomial-time algorithm for the paired-domination problem on permutation graphs
نویسندگان
چکیده
منابع مشابه
A polynomial-time algorithm for the paired-domination problem on permutation graphs
4 A set S of vertices in a graph H = (V, E) with no isolated vertices is a paired-dominating 5 set of H if every vertex of H is adjacent to at least one vertex in S and if the subgraph 6 induced by S contains a perfect matching. Let G be a permutation graph and π be its 7 corresponding permutation. In this paper we present an O(mn) time algorithm for finding 8 a minimum cardinality paired-domin...
متن کاملAn O(n)-Time Algorithm for the Paired-Domination Problem on Permutation Graphs
A vertex subset D of a graph G is a dominating set if every vertex of G is either in D or is adjacent to a vertex in D. The paired-domination problem on G asks for a minimum-cardinality dominating set S of G such that the subgraph induced by S contains a perfect matching; motivation for this problem comes from the interest in finding a small number of locations to place pairs of mutually visibl...
متن کاملA Linear-Time Algorithm for the Weighted Paired-Domination Problem on Block Graphs
In a graph G = (V,E), a vertex subset S ⊆ V (G) is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. A dominating set S of G is called a paired-dominating set of G if the induced subgraph G[S] contains a perfect matching. In this paper, we propose an O(n + m)-time algorithm for the weighted paireddomination problem on block graphs using dynamic programming,...
متن کاملLinear-Time Algorithm for the Paired-Domination Problem on Weighted Block Graphs
Given a graph G = (V,E), the domination problem is to find a minimum size vertex subset S ⊆ V (G) such that every vertex not in S is adjacent to a vertex in S. A dominating set S of G is called a paired-dominating set if the induced subgraph G[S] contains a perfect matching. The paired-domination problem involves finding a paired-dominating set S of G such that the cardinality of S is minimized...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2009
ISSN: 0166-218X
DOI: 10.1016/j.dam.2008.02.015